
Pop – n – Slide Gallery
By Kaosweaver

A Kaosweaver Dreamweaver Extension

Put a visually pleasing popup and slideshow gallery on the page in minutes.

Pop-n-Slide Gallery consists of two extensions, one for making the gallery itself and one

for adding color schemes to the gallery and maintaining them. The extension is pretty

straightforward, however, do take some time to review these documents so you can

fully utilize the extension and deploy it to a website without any issues.

For Dreamweaver MX 2004 and higher, Windows 2000 & XP or higher and OS 9.x and higher

 2

Table of Contents

Gallery Extension Interface 3

Colors Extension Interface 7

Quick Start guide 9

Troubleshooting 12

Credits 20

 3

Pop-n-Slide Gallery Interface

Let’s take a quick look at the interface:

The gallery interface has two parts, the top part which is for the gallery details:

 4

And the bottom part which is for the images:

The top section for the gallery has options for editing existing galleries on the page,
setting the color scheme, giving the gallery a name and setting the top and bottom
margins for the images being displayed in the gallery.

Editing an existing gallery:

This selection will either have no options or will contain a list of existing galleries,
detailed by their name to edit. Selecting a gallery here will remove all options currently
entered in the extension and load the selected gallery’s entries.

Gallery Name:

This is the entry box for entering the Gallery Name, this is the name which will at the top
of the browser popup when the script is running. This is also the name which will
appear in the Edit Existing Gallery drop down option list.

Color Scheme:

This dropdown contains all of the color schemes that are available. More can be added
and these can be deleted from the Popup Gallery Color command. The color scheme
controls the colors for the popup display.

 5

Image Margin:

Enter the pixel margin for the top and bottom to put space around the popup image.
Otherwise, the tallest image will not have any background color between it and the top
and bottom colors for the display area.

On Page Image:

This is the image which will be the trigger for the gallery to launch from on the main
page. Usually people will assign this image a smaller version of the full sized first
image on the list.

The bottom section is for loading images and entering captions. It has an icon bar for
getting the images, the image list box and the caption entry field.

Icons:

From left to right – Add an image, Delete an image, Add a folder, Delete all images,
Move an image up, Move an image down and Sort images by name.

 Add an image

This will open a file search box to select a file. Only files that are local to the site the
gallery page is part of can be used for the site.

 Delete an image

This will mark an image for deletion from the list by putting a < before it and a > after it.
An image which is marked for deletion can be brought back by clicking on this icon
again.

 Add a folder

This will add all of the image files in a folder. The images that will be included will have
to end with .gif, .jpg, .jpeg or .png. No other images will be added.

 6

 Delete all images

This will remove all of the images in the image list. To undelete an image, click on the
image and the Delete an Image icon to remove it from the deleted list.

 Move image up

This will move an image up in the list of images in the image list box.

 Move image down

This will move an image down in the list of images in the image list box.

 Sort images

This sorts all of the images in alphabetical order by the name of the image.

Image List Box

The is the list of images that are contained in the gallery, deleted images are marked
with a < and > surrounding the image. Clicking on an image in the list will populate the
caption box below this box with the corresponding caption for the image.

Caption

This is the entry box for the caption for a selected image in the Image List Box. Once
entered, the caption will be associated to the image selected in the Image List box.

 7

Pop-n-Slide Color Command

The Color Scheme editor is designed to enter new schemes or to delete an existing
scheme. It can handle adding multiple schemes at the same time or deleting schemes.
To exit, click the Exit button.

Existing Schemes

This is a list of the existing schemes which can be deleted. Select the scheme in the
dropdown and then click on the Delete Skin button. It will not allow the last scheme to
be deleted.

Color Scheme Name

Enter a name for the color scheme here, the name needs to be unique and it also
shouldn’t contain any special characters (just use letters and numbers and spaces).

Color Entries

 8

These are for selecting a color for the areas listed. All colors need to be entered in hex
format (#abc123).

 9

Quick Start Guide

1. Start Dreamweaver

2. Select your site from the file panel.

3. Open a file from that site or make a new file for the site.

4. Set the display to design view and click on the page where you want the main
image to go (which will trigger the Pop-n-Slide Gallery).

5. Setup a folder with your images in it.

6. Click on the Command Menu.

 10

7. Click on Kaosweaver.com from the dropdown menu, then Pop n Slide Gallery.

8. This opens the extension interface.

9. Enter a name for the Gallery (Test Gallery)

10. Select a Color Scheme (or leave it Royal Blue)

 11

11. Set a margin for the images (10) – do not include a unit of measure, like px or em
or %.

12. Select an image for the On Page Image.

13. Click on the folder icon.

14. Select a folder which has your images in it. (from step 5)

(these steps are optional)

15. Back in the extension, click on an image in the image list box.

16. Enter a caption for the image.

17. Repeat for all images.
(done with the optional section)

18. Click OK.

19. You should have an image in the design view which matches the first image from
the image list box.

20. View the source of the image and look for something similar to this:

<a href="kw_pG_698522.html"
onclick="kw_popGallery('698522','width=640,height=780,scrollbars=no'); return
false;"><img src="images/classic-car-st-tropez.jpg" width="600" height="395"
border="0" />

21. Find the file name (in red above)

22. Save this page.

23. Upload this page, the file from step 21 and all of the images to a server.

24. Load the page in a browser.

That should load the page, clicking on the image pops the Pop-n-Slide Gallery up and
then the images should cycle through as well as the captions and the number on the
bottom should change as well.

 12

Troubleshooting

Thank you for purchasing Pop-n-Slide Gallery. We hope you’ve found this

documentation helpful and the extension profitable for your business or enabling you to

make your web site work how you want it to. We hope we’ve covered all of the possible

options, questions or usage issues with the manual. We have support available, either

from email, forum or our ticket system, in case we’ve not explained something

sufficiently enough so that you are able to use the product.

We want to stress, please send us an email before investing hours working on
this extension if you encounter a problem we’ve not expected. It has been our

experience that we’re able to resolve almost all issues within minutes of receiving the

email (which could take some time to receive, depending on when it gets sent). We are

active and aggressive in releasing fixes, updates or modifications when we have

something better. In order to provide the best support we can for you is have you

provide us meaningful messages.

These bullet points are from an article on Effective Bug Reporting by Simon Tatham

published under his OpenContent Licence. The copy has been modified to suit our

applications.

How to Report Bugs Effectively

by Simon Tatham, professional and free-software programmer

Introduction

Anybody who has written software for public use will probably have received at
least one bad bug report. Reports that say nothing ("It doesn't work!"); reports that
make no sense; reports that don't give enough information; reports that give wrong
information. Reports of problems that turn out to be user error; reports of problems
that turn out to be the fault of somebody else's program; reports of problems that
turn out to be network failures.

 13

There's a reason why technical support is seen as a horrible job to be in, and that
reason is bad bug reports. However, not all bug reports are unpleasant: I maintain
free software, when I'm not earning my living, and sometimes I receive wonderfully
clear, helpful, informative bug reports.

In a nutshell, the aim of a bug report is to enable the programmer to see the
program failing in front of them. You can give them careful and detailed
instructions on how to make it fail. If they can make it fail, they will try to gather
extra information until they know the cause. If they can't make it fail, they will have
to ask you to gather that information for them.

In bug reports, try to make very clear what are actual facts ("I was at the computer
and this happened") and what are speculations ("I think the problem might be
this"). Leave out speculations if you want to, but don't leave out facts.

When you report a bug, you are doing so because you want the bug fixed. There
is no point in swearing at the programmer or being deliberately unhelpful: it may
be their fault and your problem, and you might be right to be angry with them, but
the bug will get fixed faster if you help them by supplying all the information they
need.

"It doesn't work."

Give the programmer some credit for basic intelligence: if the program really didn't
work at all, they would probably have noticed. Since they haven't noticed, it must
be working for them. Therefore, either you are doing something differently from
them, or your environment is different from theirs. They need information;
providing this information is the purpose of a bug report. More information is
almost always better than less.

If you are not reporting a bug but just asking for help using the program, you
should state where you have already looked for the answer to your question. ("I
looked in chapter 4 and section 5.2 but couldn't find anything that told me if this is
possible.") This will let the programmer know where people will expect to find the
answer, so they can make the documentation easier to use.

"Show me how to show myself."

If you have to report a bug to a programmer who can't be present in person, the
aim of the exercise is to enable them to reproduce the problem. You want the
programmer to run their own copy of the program, do the same things to it, and
make it fail in the same way. When they can see the problem happening in front of
their eyes, then they can deal with it.

 14

So tell them exactly what you did. If it's a graphical program, tell them which
buttons you pressed and what order you pressed them in. If it's a program you run
by typing a command, show them precisely what command you typed. Wherever
possible, you should provide a verbatim transcript of the session, showing what
commands you typed and what the computer output in response.

Give the programmer all the input you can think of. If the program reads from a
file, you will probably need to send a copy of the file. If the program talks to
another computer over a network, you probably can't send a copy of that
computer, but you can at least say what kind of computer it is, and (if you can)
what software is running on it.

[Kaosweaver: send all files to us by zipping them into one file, with subfolders as
necessary – unzipped files are deleted by virus and spam filters]

[Kaosweaver – If possible, upload the page if the error isn’t in the extension and
provide the URL to the page, this is very very helpful]

"Works for me. So what goes wrong?"

If you give the programmer a long list of inputs and actions, and they fire up their
own copy of the program and nothing goes wrong, then you haven't given them
enough information. Possibly the fault doesn't show up on every computer; your
system and theirs may differ in some way. Possibly you have misunderstood what
the program is supposed to do, and you are both looking at exactly the same
display but you think it's wrong and they know it's right.

So also describe what happened. Tell them exactly what you saw. Tell them why
you think what you saw is wrong; better still, tell them exactly what you expected
to see. If you say "and then it went wrong", you have left out some very important
information.

If you saw error messages then tell the programmer, carefully and precisely, what
they were. They are important! At this stage, the programmer is not trying to fix the
problem: they're just trying to find it. They need to know what has gone wrong, and
those error messages are the computer's best effort to tell you that. Write the
errors down if you have no other easy way to remember them, but it's not worth
reporting that the program generated an error unless you can also report what the
error message was.

In particular, if the error message has numbers in it, do let the programmer have
those numbers. Just because you can't see any meaning in them doesn't mean
there isn't any. Numbers contain all kinds of information that can be read by
programmers, and they are likely to contain vital clues. Numbers in error
messages are there because the computer is too confused to report the error in

 15

words, but is doing the best it can to get the important information to you
somehow.

At this stage, the programmer is effectively doing detective work. They don't know
what's happened, and they can't get close enough to watch it happening for
themselves, so they are searching for clues that might give it away. Error
messages, incomprehensible strings of numbers, and even unexplained delays
are all just as important as fingerprints at the scene of a crime. Keep them!

[Kaosweaver: Screen shots of error messages are perfect! If just sending one or
two images of errors, you don’t have to zip them, please use jpeg or gif formats for
size considerations]

"So then I tried . . ."

There are a lot of things you might do when an error or bug comes up. Many of
them make the problem worse. A friend of mine at school deleted all her Word
documents by mistake, and before calling in any expert help, she tried reinstalling
Word, and then she tried running Defrag. Neither of these helped recover her files,
and between them they scrambled her disk to the extent that no Undelete program
in the world would have been able to recover anything. If she'd only left it alone,
she might have had a chance.

Users like this are like a mongoose backed into a corner: with its back to the wall
and seeing certain death staring it in the face, it attacks frantically, because doing
something has to be better than doing nothing. This is not well adapted to the type
of problems computers produce.

Instead of being a mongoose, be an antelope. When an antelope is confronted
with something unexpected or frightening, it freezes. It stays absolutely still and
tries not to attract any attention, while it stops and thinks and works out the best
thing to do. (If antelopes had a technical support line, it would be telephoning it at
this point.) Then, once it has decided what the safest thing to do is, it does it.

When something goes wrong, immediately stop doing anything. Don't touch any
buttons at all. Look at the screen and notice everything out of the ordinary, and
remember it or write it down. Then perhaps start cautiously pressing "OK" or
"Cancel", whichever seems safest. Try to develop a reflex reaction - if a computer
does anything unexpected, freeze.

If you manage to get out of the problem, whether by closing down the affected
program or by rebooting the computer, a good thing to do is to try to make it
happen again. Programmers like problems that they can reproduce more than
once. Happy programmers fix bugs faster and more efficiently.

 16

"I think the tachyon modulation must be wrongly polarised."

It isn't only non-programmers who produce bad bug reports. Some of the worst
bug reports I've ever seen come from programmers, and even from good
programmers.

I worked with another programmer once, who kept finding bugs in his own code
and trying to fix them. Every so often he'd hit a bug he couldn't solve, and he'd call
me over to help. "What's gone wrong?" I'd ask. He would reply by telling me his
current opinion of what needed to be fixed.

This worked fine when his current opinion was right. It meant he'd already done
half the work and we were able to finish the job together. It was efficient and
useful.

But quite often he was wrong. We would work for some time trying to figure out
why some particular part of the program was producing incorrect data, and
eventually we would discover that it wasn't, that we'd been investigating a perfectly
good piece of code for half an hour, and that the actual problem was somewhere
else.

I'm sure he wouldn't do that to a doctor. "Doctor, I need a prescription for
Hydroyoyodyne." People know not to say that to a doctor: you describe the
symptoms, the actual discomforts and aches and pains and rashes and fevers,
and you let the doctor do the diagnosis of what the problem is and what to do
about it. Otherwise the doctor dismisses you as a hypochondriac or crackpot, and
quite rightly so.

It's the same with programmers. Providing your own diagnosis might be helpful
sometimes, but always state the symptoms. The diagnosis is an optional extra,
and not an alternative to giving the symptoms. Equally, sending a modification to
the code to fix the problem is a useful addition to a bug report but not an adequate
substitute for one.

If a programmer asks you for extra information, don't make it up! Somebody
reported a bug to me once, and I asked him to try a command that I knew wouldn't
work. The reason I asked him to try it was that I wanted to know which of two
different error messages it would give. Knowing which error message came back
would give a vital clue. But he didn't actually try it - he just mailed me back and
said "No, that won't work". It took me some time to persuade him to try it for real.

Using your intelligence to help the programmer is fine. Even if your deductions are
wrong, the programmer should be grateful that you at least tried to make their life
easier. But report the symptoms as well, or you may well make their life much
more difficult instead.

 17

"That's funny, it did it a moment ago."

Say "intermittent fault" to any programmer and watch their face fall. The easy
problems are the ones where performing a simple sequence of actions will cause
the failure to occur. The programmer can then repeat those actions under closely
observed test conditions and watch what happens in great detail. Too many
problems simply don't work that way: there will be programs that fail once a week,
or fail once in a blue moon, or never fail when you try them in front of the
programmer but always fail when you have a deadline coming up.

Most intermittent faults are not truly intermittent. Most of them have some logic
somewhere. Some might occur when the machine is running out of memory, some
might occur when another program tries to modify a critical file at the wrong
moment, and some might occur only in the first half of every hour! (I've actually
seen one of these.)

Also, if you can reproduce the bug but the programmer can't, it could very well be
that their computer and your computer are different in some way and this
difference is causing the problem. I had a program once whose window curled up
into a little ball in the top left corner of the screen, and sat there and sulked. But it
only did it on 800x600 screens; it was fine on my 1024x768 monitor.

The programmer will want to know anything you can find out about the problem.
Try it on another machine, perhaps. Try it twice or three times and see how often it
fails. If it goes wrong when you're doing serious work but not when you're trying to
demonstrate it, it might be long running times or large files that make it fall over.
Try to remember as much detail as you can about what you were doing to it when
it did fall over, and if you see any patterns, mention them. Anything you can
provide has to be some help. Even if it's only probabilistic (such as "it tends to
crash more often when Emacs is running"), it might not provide direct clues to the
cause of the problem, but it might help the programmer reproduce it.

Most importantly, the programmer will want to be sure of whether they're dealing
with a true intermittent fault or a machine-specific fault. They will want to know lots
of details about your computer, so they can work out how it differs from theirs. A
lot of these details will depend on the particular program, but one thing you should
definitely be ready to provide is version numbers. The version number of the
program itself, and the version number of the operating system, and probably the
version numbers of any other programs that are involved in the problem.

"So I loaded the disk on to my Windows . . ."

Writing clearly is essential in a bug report. If the programmer can't tell what you
meant, you might as well not have said anything.

 18

I get bug reports from all around the world. Many of them are from non-native
English speakers, and a lot of those apologise for their poor English. In general,
the bug reports with apologies for their poor English are actually very clear and
useful. All the most unclear reports come from native English speakers who
assume that I will understand them even if they don't make any effort to be clear or
precise.

• Be specific. If you can do the same thing two different ways, state which one you

used. "I selected Load" might mean "I clicked on Load" or "I pressed Alt-L". Say

which you did. Sometimes it matters.

• Be verbose. Give more information rather than less. If you say too much, the

programmer can ignore some of it. If you say too little, they have to come back

and ask more questions. One bug report I received was a single sentence; every

time I asked for more information, the reporter would reply with another single

sentence. It took me several weeks to get a useful amount of information,

because it turned up one short sentence at a time.

• Be careful of pronouns. Don't use words like "it", or references like "the window",

when it's unclear what they mean. Consider this: "I started FooApp. It put up a

warning window. I tried to close it and it crashed." It isn't clear what the user tried

to close. Did they try to close the warning window, or the whole of FooApp? It

makes a difference. Instead, you could say "I started FooApp, which put up a

warning window. I tried to close the warning window, and FooApp crashed." This

is longer and more repetitive, but also clearer and less easy to misunderstand.

• Read what you wrote. Read the report back to yourself, and see if you think it's

clear. If you have listed a sequence of actions which should produce the failure,

try following them yourself, to see if you missed a step.

Summary

• The first aim of a bug report is to let the programmer see the failure with their

own eyes. If you can't be with them to make it fail in front of them, give them

detailed instructions so that they can make it fail for themselves.

• In case the first aim doesn't succeed, and the programmer can't see it failing

themselves, the second aim of a bug report is to describe what went wrong.

 19

Describe everything in detail. State what you saw, and also state what you

expected to see. Write down the error messages, especially if they have

numbers in.

• When your computer does something unexpected, freeze. Do nothing until you're

calm, and don't do anything that you think might be dangerous.

• By all means try to diagnose the fault yourself if you think you can, but if you do,

you should still report the symptoms as well.

• Be ready to provide extra information if the programmer needs it. If they didn't

need it, they wouldn't be asking for it. They aren't being deliberately awkward.

Have version numbers at your fingertips, because they will probably be needed.

• Write clearly. Say what you mean, and make sure it can't be misinterpreted.

• Above all, be precise. Programmers like precision.

Disclaimer: I've never actually seen a mongoose or an antelope. My zoology may be inaccurate.

$Id: bugs.html,v 1.24 2004/06/01 14:06:37 simon Exp $

Copyright © 1999 Simon Tatham.
This document is OpenContent.
You may copy and use the text under the terms of the OpenContent Licence.
Please send comments and criticism on this article to anakin@pobox.com.

We would like to add some things that we’ve noticed help us help you a lot better:

1. Always restart Dreamweaver after installing an extension.

2. Always work from a saved page that is part of a site, unconnected pages don’t

work well with paths to files it can’t find. Dreamweaver has no clue where you

want to save the file and it will insert machine paths instead of relative paths

which enable the web server to find the file.

3. If you get an error working on a complex page, try the same process on a blank

page with just the minimum elements needed to accomplish the same task.

4. Put it on a test page and on a web server.

 20

5. Try it on another machine.

6. Try it on a machine not using Windows 98 or Windows ME or Mac OS 8.x or Mac

OS 9.x.

7. Always state what version of Dreamweaver you have (including if you’ve

upgraded to the latest bug fix from Macromedia), the Extension Manager if you’re

having install problems, and the operating system with version. If these aren’t

stated, we will ask before even looking into the problem.

Following these suggestions will assist us in providing you with the quickest solution to

the problem. We really want to solve whatever problem you’ve encountered with our

software. We don’t spending money on things we don’t think are working like what they

said it would do so we don’t want to have our software fail you and not fix it. If we have

the opportunity to fix the problem, we both win – you get what you paid for, we get the

chance to fix a bug we don’t know about.

CREDITS

I’d like to take this time to thanks some people:

 Samantha Davis, my wife. Without her sacrifice of my time to develop software,

Kaosweaver itself wouldn’t exist. I am forever in debt to her and I am so blessed to

have her as my wife!

 Ken Lanxner – helped out with Macintosh beta testing and troubleshooting

Finally I give credit to God who has blessed me with the skill and ability to do what I do.

Thank you for purchasing Pop-n-Slide Gallery!

Paul Davis
http://www.kaosweaver.com/

